\(\int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [435]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 45 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {x}{a^3}-\frac {\text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {4 \cos (c+d x)}{a^3 d (1+\sin (c+d x))} \]

[Out]

x/a^3-arctanh(cos(d*x+c))/a^3/d+4*cos(d*x+c)/a^3/d/(1+sin(d*x+c))

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2954, 2951, 3855, 2727} \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {4 \cos (c+d x)}{a^3 d (\sin (c+d x)+1)}+\frac {x}{a^3} \]

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x])/(a + a*Sin[c + d*x])^3,x]

[Out]

x/a^3 - ArcTanh[Cos[c + d*x]]/(a^3*d) + (4*Cos[c + d*x])/(a^3*d*(1 + Sin[c + d*x]))

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2951

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[1/a^p, Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x]
)^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))

Rule 2954

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc (c+d x) \sec ^2(c+d x) (a-a \sin (c+d x))^3 \, dx}{a^6} \\ & = \frac {\int \left (a+a \csc (c+d x)-\frac {4 a}{1+\sin (c+d x)}\right ) \, dx}{a^4} \\ & = \frac {x}{a^3}+\frac {\int \csc (c+d x) \, dx}{a^3}-\frac {4 \int \frac {1}{1+\sin (c+d x)} \, dx}{a^3} \\ & = \frac {x}{a^3}-\frac {\text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {4 \cos (c+d x)}{a^3 d (1+\sin (c+d x))} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(122\) vs. \(2(45)=90\).

Time = 0.76 (sec) , antiderivative size = 122, normalized size of antiderivative = 2.71 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^5 \left (\cos \left (\frac {1}{2} (c+d x)\right ) \left (c+d x-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+\left (-8+c+d x-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{a^3 d (1+\sin (c+d x))^3} \]

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x])/(a + a*Sin[c + d*x])^3,x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^5*(Cos[(c + d*x)/2]*(c + d*x - Log[Cos[(c + d*x)/2]] + Log[Sin[(c + d*x
)/2]]) + (-8 + c + d*x - Log[Cos[(c + d*x)/2]] + Log[Sin[(c + d*x)/2]])*Sin[(c + d*x)/2]))/(a^3*d*(1 + Sin[c +
 d*x])^3)

Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.02

method result size
derivativedivides \(\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {8}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(46\)
default \(\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {8}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(46\)
parallelrisch \(\frac {\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) d x +d x +8}{d \,a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}\) \(60\)
risch \(\frac {x}{a^{3}}+\frac {8}{d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{3}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{3}}\) \(68\)
norman \(\frac {\frac {x}{a}+\frac {x \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {8}{a d}+\frac {8 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {32 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d a}+\frac {32 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {72 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {72 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {128 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {5 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}+\frac {13 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {25 x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {38 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {46 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {46 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {38 x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {25 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {13 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {5 x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {128 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {176 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {176 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {192 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(437\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d/a^3*(2*arctan(tan(1/2*d*x+1/2*c))+8/(tan(1/2*d*x+1/2*c)+1)+ln(tan(1/2*d*x+1/2*c)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 117 vs. \(2 (45) = 90\).

Time = 0.27 (sec) , antiderivative size = 117, normalized size of antiderivative = 2.60 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {2 \, d x + 2 \, {\left (d x + 4\right )} \cos \left (d x + c\right ) - {\left (\cos \left (d x + c\right ) + \sin \left (d x + c\right ) + 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + {\left (\cos \left (d x + c\right ) + \sin \left (d x + c\right ) + 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, {\left (d x - 4\right )} \sin \left (d x + c\right ) + 8}{2 \, {\left (a^{3} d \cos \left (d x + c\right ) + a^{3} d \sin \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/2*(2*d*x + 2*(d*x + 4)*cos(d*x + c) - (cos(d*x + c) + sin(d*x + c) + 1)*log(1/2*cos(d*x + c) + 1/2) + (cos(d
*x + c) + sin(d*x + c) + 1)*log(-1/2*cos(d*x + c) + 1/2) + 2*(d*x - 4)*sin(d*x + c) + 8)/(a^3*d*cos(d*x + c) +
 a^3*d*sin(d*x + c) + a^3*d)

Sympy [F]

\[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\int \frac {\cos ^{4}{\left (c + d x \right )} \csc {\left (c + d x \right )}}{\sin ^{3}{\left (c + d x \right )} + 3 \sin ^{2}{\left (c + d x \right )} + 3 \sin {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)/(a+a*sin(d*x+c))**3,x)

[Out]

Integral(cos(c + d*x)**4*csc(c + d*x)/(sin(c + d*x)**3 + 3*sin(c + d*x)**2 + 3*sin(c + d*x) + 1), x)/a**3

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.73 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {8}{a^{3} + \frac {a^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}} + \frac {2 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}} + \frac {\log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}}{d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

(8/(a^3 + a^3*sin(d*x + c)/(cos(d*x + c) + 1)) + 2*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^3 + log(sin(d*x +
 c)/(cos(d*x + c) + 1))/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.04 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {d x + c}{a^{3}} + \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{3}} + \frac {8}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}}}{d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

((d*x + c)/a^3 + log(abs(tan(1/2*d*x + 1/2*c)))/a^3 + 8/(a^3*(tan(1/2*d*x + 1/2*c) + 1)))/d

Mupad [B] (verification not implemented)

Time = 9.63 (sec) , antiderivative size = 115, normalized size of antiderivative = 2.56 \[ \int \frac {\cos ^3(c+d x) \cot (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {8}{d\,\left (a^3+a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}+\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}+\frac {2\,\mathrm {atan}\left (\frac {4\,a^3}{4\,a^3-4\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {4\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,a^3-4\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{a^3\,d} \]

[In]

int(cos(c + d*x)^4/(sin(c + d*x)*(a + a*sin(c + d*x))^3),x)

[Out]

8/(d*(a^3 + a^3*tan(c/2 + (d*x)/2))) + log(tan(c/2 + (d*x)/2))/(a^3*d) + (2*atan((4*a^3)/(4*a^3 - 4*a^3*tan(c/
2 + (d*x)/2)) + (4*a^3*tan(c/2 + (d*x)/2))/(4*a^3 - 4*a^3*tan(c/2 + (d*x)/2))))/(a^3*d)